
IMPLEMENTING OBSERVATIONAL EQUALITY USING
NORMALISATION BY EVALUATION

Matthew SIRMAN Meven LENNON-BERTRAND Neel KRISHNASWAMI

Types – June 12th 2024

1



A WUNDERKIND MEETS ANOTHER



FOR THOSE WHO MISSED THE HYPE I: OBSERVATIONAL EQUALITY

Irrelevant
Γ ⊢ 𝑝 : 𝑡 =𝐴 𝑢 Γ ⊢ 𝑞 : 𝑡 =𝐴 𝑢

Γ ⊢ 𝑝 ≅ 𝑞 : 𝑡 =𝐴 𝑢 Cast
Γ ⊢ 𝑒 : 𝐴 =U 𝐴′ Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝐜𝐚𝐬𝐭(𝐴, 𝐴′, 𝑒, 𝑡) : 𝐴′

CastΠ
Γ ⊢ 𝑒 : Π 𝑥: 𝐴.𝐵 =U Π𝑥: 𝐴′.𝐵′ Γ ⊢ 𝑓 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴′

Γ ⊢ 𝐜𝐚𝐬𝐭(Π 𝑥: 𝐴.𝐵, Π 𝑥: 𝐴′.𝐵′, 𝑒, 𝑓 ) 𝑢 ≅ 𝐜𝐚𝐬𝐭(𝐵[…], 𝐵[𝑢], …, (𝑓 𝐜𝐚𝐬𝐭(𝐴′, 𝐴, …, 𝑢))) : 𝐵[𝑢]

CastId
Γ ⊢ 𝑒 : 𝐴 =U 𝐴′ Γ ⊢ 𝐴 ≅ 𝐴′ Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝐜𝐚𝐬𝐭(𝐴, 𝐴′, 𝑒, 𝑡) ≅ 𝑡 : 𝐴′

2



FOR THOSE WHO MISSED THE HYPE I: OBSERVATIONAL EQUALITY

Irrelevant
Γ ⊢ 𝑝 : 𝑡 =𝐴 𝑢 Γ ⊢ 𝑞 : 𝑡 =𝐴 𝑢

Γ ⊢ 𝑝 ≅ 𝑞 : 𝑡 =𝐴 𝑢 Cast
Γ ⊢ 𝑒 : 𝐴 =U 𝐴′ Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝐜𝐚𝐬𝐭(𝐴, 𝐴′, 𝑒, 𝑡) : 𝐴′

CastΠ
Γ ⊢ 𝑒 : Π 𝑥: 𝐴.𝐵 =U Π𝑥: 𝐴′.𝐵′ Γ ⊢ 𝑓 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴′

Γ ⊢ 𝐜𝐚𝐬𝐭(Π 𝑥: 𝐴.𝐵, Π 𝑥: 𝐴′.𝐵′, 𝑒, 𝑓 ) 𝑢 ≅ 𝐜𝐚𝐬𝐭(𝐵[…], 𝐵[𝑢], …, (𝑓 𝐜𝐚𝐬𝐭(𝐴′, 𝐴, …, 𝑢))) : 𝐵[𝑢]

CastId
Γ ⊢ 𝑒 : 𝐴 =U 𝐴′ Γ ⊢ 𝐴 ≅ 𝐴′ Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝐜𝐚𝐬𝐭(𝐴, 𝐴′, 𝑒, 𝑡) ≅ 𝑡 : 𝐴′

2



FOR THOSE WHO MISSED THE HYPE II: NBE

𝖲𝗍𝗋𝗂𝗇𝗀

𝖯𝗋𝖾𝖳𝗆 Parse error

𝖭𝖿 𝖳𝗆 Type error

𝖣

Success Unification error

𝗉𝖺𝗋𝗌𝖾 𝗉𝖺𝗋𝗌𝖾 errors

𝗂𝗇𝖿𝖾𝗋 errors𝗂𝗇𝖿𝖾𝗋
⊊

[[_]]_
𝗊𝖭𝖿

𝖼𝗈𝗇𝗏 errors𝖼𝗈𝗇𝗏

3



THE TALK IN ONE SENTENCE

Normalisation by evaluation: it works!1

A collection of learned lessons.

1But you have to be a bit careful
4



THE TALK IN ONE SENTENCE

Normalisation by evaluation: it works!1

A collection of learned lessons.

1But you have to be a bit careful
4



NBE AND DEFINITIONAL IRRELEVANCE



INTERPRETING PROOFS

Ω: universe of definitionally irrelevant propositions

Γ ⊢ 𝐴 Γ ⊢ 𝑝 : ⊥
Γ ⊢ abort𝐴 𝑝 : 𝐴
[[_]]_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣

[[abort𝐴 𝑝]]𝜌 =

[[_]]U_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣U

[[abort𝐴 𝑝]]U𝜌 = ↑(𝖠𝖻𝗈𝗋𝗍 ([[𝐴]]U𝜌) ([[𝑝]]Ω𝜌))

[[_]]Ω_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣Ω
…

We must decide which evaluation to use based on the term only:
[[𝑡 𝑢]]U𝜌 = 𝖺𝗉𝗉 ([[𝑡]]U𝜌) ([[𝑢]]?𝜌)

5



INTERPRETING PROOFS

Ω: universe of definitionally irrelevant propositions
Γ ⊢ 𝐴 Γ ⊢ 𝑝 : ⊥
Γ ⊢ abort𝐴 𝑝 : 𝐴

[[_]]_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣
[[abort𝐴 𝑝]]𝜌 =

[[_]]U_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣U

[[abort𝐴 𝑝]]U𝜌 = ↑(𝖠𝖻𝗈𝗋𝗍 ([[𝐴]]U𝜌) ([[𝑝]]Ω𝜌))

[[_]]Ω_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣Ω
…

We must decide which evaluation to use based on the term only:
[[𝑡 𝑢]]U𝜌 = 𝖺𝗉𝗉 ([[𝑡]]U𝜌) ([[𝑢]]?𝜌)

5



INTERPRETING PROOFS

Ω: universe of definitionally irrelevant propositions
Γ ⊢ 𝐴 Γ ⊢ 𝑝 : ⊥
Γ ⊢ abort𝐴 𝑝 : 𝐴
[[_]]_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣

[[abort𝐴 𝑝]]𝜌 = ??

[[_]]U_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣U

[[abort𝐴 𝑝]]U𝜌 = ↑(𝖠𝖻𝗈𝗋𝗍 ([[𝐴]]U𝜌) ([[𝑝]]Ω𝜌))

[[_]]Ω_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣Ω
…

We must decide which evaluation to use based on the term only:
[[𝑡 𝑢]]U𝜌 = 𝖺𝗉𝗉 ([[𝑡]]U𝜌) ([[𝑢]]?𝜌)

5



INTERPRETING PROOFS

Ω: universe of definitionally irrelevant propositions
Γ ⊢ 𝐴 Γ ⊢ 𝑝 : ⊥
Γ ⊢ abort𝐴 𝑝 : 𝐴

[[_]]_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣
[[abort𝐴 𝑝]]𝜌 = ↑(𝖠𝖻𝗈𝗋𝗍 [[𝐴]]𝜌 [[𝑝]]𝜌)

[[_]]U_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣U

[[abort𝐴 𝑝]]U𝜌 = ↑(𝖠𝖻𝗈𝗋𝗍 ([[𝐴]]U𝜌) ([[𝑝]]Ω𝜌))

[[_]]Ω_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣Ω
…

We must decide which evaluation to use based on the term only:
[[𝑡 𝑢]]U𝜌 = 𝖺𝗉𝗉 ([[𝑡]]U𝜌) ([[𝑢]]?𝜌)

5



INTERPRETING PROOFS

Ω: universe of definitionally irrelevant propositions
Γ ⊢ 𝐴 Γ ⊢ 𝑝 : ⊥
Γ ⊢ abort𝐴 𝑝 : 𝐴

[[_]]U_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣U

[[abort𝐴 𝑝]]U𝜌 = ↑(𝖠𝖻𝗈𝗋𝗍 ([[𝐴]]U𝜌) ([[𝑝]]Ω𝜌))

[[_]]Ω_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣Ω
…

We must decide which evaluation to use based on the term only:

[[𝑡 𝑢]]U𝜌 = 𝖺𝗉𝗉 ([[𝑡]]U𝜌) ([[𝑢]]?𝜌)

5



INTERPRETING PROOFS

Ω: universe of definitionally irrelevant propositions
Γ ⊢ 𝐴 Γ ⊢ 𝑝 : ⊥
Γ ⊢ abort𝐴 𝑝 : 𝐴

[[_]]U_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣U

[[abort𝐴 𝑝]]U𝜌 = ↑(𝖠𝖻𝗈𝗋𝗍 ([[𝐴]]U𝜌) ([[𝑝]]Ω𝜌))

[[_]]Ω_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣Ω
…

We must decide which evaluation to use based on the term only:

[[𝑡 𝑢]]U𝜌 = 𝖺𝗉𝗉 ([[𝑡]]U𝜌) ([[𝑢]]?𝜌)

5



INTERPRETING PROOFS

Ω: universe of definitionally irrelevant propositions
Γ ⊢ 𝐴 Γ ⊢ 𝑝 : ⊥
Γ ⊢ abort𝐴 𝑝 : 𝐴

[[_]]U_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣U

[[abort𝐴 𝑝]]U𝜌 = ↑(𝖠𝖻𝗈𝗋𝗍 ([[𝐴]]U𝜌) ([[𝑝]]Ω𝜌))

[[_]]Ω_ : 𝖳𝗆 ⇾ 𝖤𝗇𝗏 ⇾ 𝖣Ω
…

We must decide which evaluation to use based on the term only:

[[𝑡 𝑢𝔰]]U𝜌 = 𝖺𝗉𝗉 ([[𝑡]]U𝜌) ([[𝑢]]𝔰𝜌)

5



WHAT SHOULD 𝖣Ω BE?

𝖲𝗍𝗋𝗂𝗇𝗀

𝖯𝗋𝖾𝖳𝗆 Parse error

𝖳𝗆Ω 𝖭𝖿 𝖳𝗆 Type error

𝖣Ω 𝖣U

Success Unification error

𝗉𝖺𝗋𝗌𝖾 𝗉𝖺𝗋𝗌𝖾 errors

𝗂𝗇𝖿𝖾𝗋 errors𝗂𝗇𝖿𝖾𝗋

[[_]]Ω_

⊊ ⊊

[[_]]U _𝗊Ω 𝗊𝖭𝖿

𝖼𝗈𝗇𝗏 errors𝖼𝗈𝗇𝗏

6



ATTEMPT 1: UNIT TYPE

This is easy! “A Modular Type-Checking Algorithm for Type Theory with Singleton Types
and Proof Irrelevance” (Abel et al., 2009):

𝖣Ω ≔ 𝟣

[[𝑝]]Ω𝜌 ≔ !

+ very simple
- quoting is lost

? no more printing to the user
- no more meta-variable solving

Solution? Add an inhabitant to all propositions, lose consistency…

7



ATTEMPT 1: UNIT TYPE

This is easy! “A Modular Type-Checking Algorithm for Type Theory with Singleton Types
and Proof Irrelevance” (Abel et al., 2009):

𝖣Ω ≔ 𝟣

[[𝑝]]Ω𝜌 ≔ !

+ very simple
- quoting is lost

? no more printing to the user
- no more meta-variable solving

Solution? Add an inhabitant to all propositions, lose consistency…

7



ATTEMPT 1: UNIT TYPE

This is easy! “A Modular Type-Checking Algorithm for Type Theory with Singleton Types
and Proof Irrelevance” (Abel et al., 2009):

𝖣Ω ≔ 𝟣

[[𝑝]]Ω𝜌 ≔ !

+ very simple
- quoting is lost

? no more printing to the user
- no more meta-variable solving

Solution? Add an inhabitant to all propositions, lose consistency…

7



ATTEMPT 2: TERMS

𝖣Ω ≔ 𝖤𝗇𝗏 × 𝖳𝗆Ω

[[𝑝]]Ω𝜌 ≔ (𝜌, 𝑝)

+ quoting is possible: quote 𝜌, substitute in 𝑝
- difficult to manipulate propositions:

𝐜𝐚𝐬𝐭(Π 𝑥: 𝐴.𝐵, Π 𝑥: 𝐴′.𝐵′, 𝑒, 𝑓 ) 𝑢 ≅ 𝐜𝐚𝐬𝐭(𝐵[𝑢′], 𝐵[𝑢], (𝐬𝐧𝐝 𝑒) 𝑢, (𝑓 𝑢′))
→ quoting and evaluation must be mutual

8



ATTEMPT 2: TERMS

𝖣Ω ≔ 𝖤𝗇𝗏 × 𝖳𝗆Ω

[[𝑝]]Ω𝜌 ≔ (𝜌, 𝑝)

+ quoting is possible: quote 𝜌, substitute in 𝑝
- difficult to manipulate propositions:

𝐜𝐚𝐬𝐭(Π 𝑥: 𝐴.𝐵, Π 𝑥: 𝐴′.𝐵′, 𝑒, 𝑓 ) 𝑢 ≅ 𝐜𝐚𝐬𝐭(𝐵[𝑢′], 𝐵[𝑢], (𝐬𝐧𝐝 𝑒) 𝑢, (𝑓 𝑢′))
→ quoting and evaluation must be mutual

8



ATTEMPT 3: A DIFFERENT DOMAIN

A domain
• similar to 𝖣U : de Bruijn levels, closures
• represents all terms: 𝖯𝖠𝗉𝗉𝔰 : 𝖣Ω ⇾ 𝖣Ω ⇾ 𝖣Ω (vs 𝖠𝗉𝗉𝔰 : 𝖣𝗇𝖾 ⇾ 𝖣𝔰 ⇾ 𝖣U )
• closures used only during quoting

New! : Freezing a relevant value: 𝜙 : 𝖣U ⇾ 𝖣Ω

[[𝑥]]Ω𝜌 ≔ 𝜙(𝜌 𝑥) if the entry 𝑥 is relevant

9



ATTEMPT 3: A DIFFERENT DOMAIN

A domain
• similar to 𝖣U : de Bruijn levels, closures
• represents all terms: 𝖯𝖠𝗉𝗉𝔰 : 𝖣Ω ⇾ 𝖣Ω ⇾ 𝖣Ω (vs 𝖠𝗉𝗉𝔰 : 𝖣𝗇𝖾 ⇾ 𝖣𝔰 ⇾ 𝖣U )
• closures used only during quoting

New! : Freezing a relevant value: 𝜙 : 𝖣U ⇾ 𝖣Ω

[[𝑥]]Ω𝜌 ≔ 𝜙(𝜌 𝑥) if the entry 𝑥 is relevant

9



CONVERSION AND UNIFICATION



CONVERSION

_ ⊢ _ ≅ _ : 𝖭𝖺𝗍 ⇾ 𝖣U ⇾ 𝖣U ⇾ 𝖮𝗉𝗍𝗂𝗈𝗇 𝖤𝗋𝗋𝗈𝗋

Ignores irrelevant subterms:

Γ ⊢↑ 𝑒 ≅↑ 𝑒′ Γ ⊢ 𝑎 ≅ 𝑎′
Γ ⊢ ↑(𝖠𝗉𝗉U 𝑒 𝑎) ≅↑(𝖠𝗉𝗉U 𝑒′ 𝑎′)

Γ ⊢ ↑ 𝑒 ≅ ↑ 𝑒′
Γ ⊢ ↑(𝖠𝗉𝗉Ω 𝑒 𝑝) ≅ ↑(𝖠𝗉𝗉Ω 𝑒′ 𝑝′)

10



CONVERSION

_ ⊢ _ ≅ _ : 𝖭𝖺𝗍 ⇾ 𝖣U ⇾ 𝖣U ⇾ 𝖮𝗉𝗍𝗂𝗈𝗇 𝖤𝗋𝗋𝗈𝗋

Ignores irrelevant subterms:

Γ ⊢↑ 𝑒 ≅↑ 𝑒′ Γ ⊢ 𝑎 ≅ 𝑎′
Γ ⊢ ↑(𝖠𝗉𝗉U 𝑒 𝑎) ≅↑(𝖠𝗉𝗉U 𝑒′ 𝑎′)

Γ ⊢ ↑ 𝑒 ≅ ↑ 𝑒′
Γ ⊢ ↑(𝖠𝗉𝗉Ω 𝑒 𝑝) ≅ ↑(𝖠𝗉𝗉Ω 𝑒′ 𝑝′)

10



COMPUTING WITH IDENTITY CASTS

The landmark rule of “Impredicative Observational Equality” (Pujet et al., 2023):

CastId
Γ ⊢ 𝑒 : 𝐴 =U 𝐴′ Γ ⊢ 𝐴 ≅ 𝐴′ Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝐜𝐚𝐬𝐭(𝐴, 𝐴′, 𝑒, 𝑡) ≅ 𝑡 : 𝐴′

A reduction/evaluation rule?
+ conceptually simple
? confluence?
- makes conversion and reduction mutual

11



COMPUTING WITH IDENTITY CASTS

The landmark rule of “Impredicative Observational Equality” (Pujet et al., 2023):

CastId
Γ ⊢ 𝑒 : 𝐴 =U 𝐴′ Γ ⊢ 𝐴 ≅ 𝐴′ Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝐜𝐚𝐬𝐭(𝐴, 𝐴′, 𝑒, 𝑡) ≅ 𝑡 : 𝐴′

A reduction/evaluation rule?
+ conceptually simple
? confluence?
- makes conversion and reduction mutual

11



IDENTITY CASTS IN CONVERSION

CastEqL
Γ ⊢ 𝐴 ≅ 𝐵 Γ ⊢ 𝑎 ≅ 𝑎′
Γ ⊢ 𝖢𝖺𝗌𝗍 𝐴 𝐵 𝑒 𝑎 ≅ 𝑎′ CastEqR

Γ ⊢ 𝐴′ ≅ 𝐵′ Γ ⊢ 𝑎 ≅ 𝑎′
Γ ⊢ 𝑎 ≅ 𝖢𝖺𝗌𝗍 𝐴′ 𝐵′ 𝑒′ 𝑎′

CastEqCong
Γ ⊢ 𝐴 ≅ 𝐴′ Γ ⊢ 𝐵 ≅ 𝐵′ Γ ⊢ 𝑎 ≅ 𝑎′

Γ ⊢ 𝖢𝖺𝗌𝗍 𝐴 𝐵 𝑒 𝑎 ≅ 𝖢𝖺𝗌𝗍 𝐴′ 𝐵′ 𝑒′ 𝑎′

1. eagerly apply CASTEQL and CASTEQR
2. if they fail, backtrack and use CASTEQCONG

Somewhat similar to term-directed η-expansion

12



METAVARIABLES!

Contextual meta-variables ?𝑚[𝜌], and sort (meta-)variables.

𝜌′ = 𝗂𝗇𝗏𝖾𝗋𝗍(𝜌) 𝑡 = 𝗋𝖾𝗇𝖺𝗆𝖾Δ?𝑚𝑖 𝑎 𝜌′

(Σ, ?𝑚𝑖, Σ′); Δ ⊢ ?𝑚𝑖[𝜌] ≅ 𝑡; (Σ, ?𝑚𝑖: = 𝑡, Σ′)

Imho, simpler and conceptually cleaner than λ-lifting

13



METAVARIABLES!

Contextual meta-variables ?𝑚[𝜌], and sort (meta-)variables.

𝜌′ = 𝗂𝗇𝗏𝖾𝗋𝗍(𝜌) 𝑡 = 𝗋𝖾𝗇𝖺𝗆𝖾Δ?𝑚𝑖 𝑎 𝜌′

(Σ, ?𝑚𝑖, Σ′); Δ ⊢ ?𝑚𝑖[𝜌] ≅ 𝑡; (Σ, ?𝑚𝑖: = 𝑡, Σ′)

Imho, simpler and conceptually cleaner than λ-lifting

13



WRAPPING UP



THE CHEAPEST GOAL MECHANISM

let f : ℕ → ℕ =
λx. S x

in
let x : ℕ =

S (S (S 0))
in
f ?{f, x}

[error]: Found proof goal.
╭──▶ <test-file>@8:7-8:14

8 │ f ?{f, x}
• ┬──────
• ╰╸ Expected type [ℕ] at goal.
•
• List of relevant terms and their types:
• f : ℕ → ℕ
• x : ℕ

─────╯

14



SOME EXTRA REMARKS

• equality and casts as destructors on the universe → reflected semantically
• 𝐫𝐞𝐟𝐥 and friends are also destructors → annotated, infer
• defunctionalised NbE → lots of closures

Extensions I will not talk about:
• quotients → very straightforward
• first-class, indexed-ish inductive types → much less
(anybody knows about Mendler-style + dependent types?)

15



SOME EXTRA REMARKS

• equality and casts as destructors on the universe → reflected semantically
• 𝐫𝐞𝐟𝐥 and friends are also destructors → annotated, infer
• defunctionalised NbE → lots of closures

Extensions I will not talk about:
• quotients → very straightforward
• first-class, indexed-ish inductive types → much less
(anybody knows about Mendler-style + dependent types?)

15



Normalisation by evaluation: it works!1

Thank you!

1But you have to be a bit careful
15


	A wunderkind meets another
	NbE and definitional irrelevance
	Conversion and unification
	Wrapping up

