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Abstract
We report on an experimental implementation of a type theory with an observational

equality type, based on Pujet et al.’s CCobs, extended with a form of inductive and quotient
types. It features a normalisation by evaluation function, which is used to implement a
bidirectional type checker. We also explore proof assistant features, notably the interaction
of strict propositions with meta-variables, and a rudimentary “hole” system.

1 Observational Equality meets NbE
Observational equality In recent years, building on an early proposal by Altenkirch et
al. [3, 4], Pujet et al. [10, 9, 11] have developed CCobs, a dependent type theory featuring
a new presentation of equality: observational equality. This equality is definitionally proof-
irrelevant: any two proofs of equality are identified. Moreover, rather than being uniformly
defined like the traditional inductive equality, observational equality has a specific behaviour
at each type. Together, these aspects lead to an equality close to traditional mathematical one,
with a seamless support of quotients, making it very attractive.

Normalisation by Evaluation Pujet et al.’s work come with an extensive meta-theoretic
investigation, yet, they do not implement their type theory. We attack this unexplored aspect,
by providing an experimental implementation, based on normalisation by evaluation (NbE)
[1], a modern technique to decide definitional equality. To do so, the NbE approach efficiently
computes normal forms by instrumenting the evaluation mechanism of the host language, and
then compares these normal forms for a simple, structural notion of equality. In particular,
abstractions/applications are handled by using functions of the host language.1

NbE for CCobs In our implementation, we extend standard NbE techniques, as presented
by e.g. Abel [1] and in Kovács’ elaboration-zoo [7], to an extension of CCobs. Our type theory
features a sort of definitionally irrelevant propositions Ω [6], an observational equality valued in
that sort, and quotient types. We also explore inductive types, as first-class construct equipped
with a form of Mendler-style recursion [8]. We did not investigate the meta-theory of this
presentation, but believe it would be an interesting avenue for future research.

Our Haskell code is available on GitHub [12]. Despite the standard NbE ideas required some
care to adapt, they largely apply to CCobs, witnessing their robustness.

2 Semantic propositions
Maybe the most important design decision in our implementation is the structure of the semantic
domain DΩ in which proofs are evaluated before being quoted back, in the standard NbE fashion.
This should reflect the fact that we should never reduce such irrelevant terms.

1Technically, we depart from this by replacing functions with closures, but the philosophy still stands.

https://github.com/AndrasKovacs/elaboration-zoo
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The simplest strategy is to erase irrelevant terms at evaluation, following Abel et al. [2],
which amounts to set DΩ to be a unit type. Unfortunately this means we cannot quote values,
and have to present users with incomplete terms. This also has undesirable consequence when
solving meta-variables.

A natural alternative is to keep a term during evaluation, i.e. to pick DΩ ::= Prop t ρ – a
term t and an environment ρ for its free variables. This is however still problematic, because
terms, being represented with de Bruijn indices, do not support cheap lifting, a key operation
on semantic values in NbE. Similarly, to be able to substitute a semantic value for a variable
in such a proof term – an operation needed during evaluation –, we would have to quote the
value, making evaluation and quoting mutually defined, which is unsatisfying.

We thus opt for a semantic domain, which uses closures to support substitution, and de
Bruijn levels for free lifting. However, these values can represent term structure that would be
normalised in relevant values, for instance [[(λx.t) u]]Ω = PApp(PLam(λt)ρ) [[u]]Ωρ, where [[·]]Ω
is evaluation of irrelevant terms, λ is a closure, and PApp and PLam are both constructors.
Compare to relevant terms where the evaluation would give [[t]]U (ρ, [[u]]Uρ).

To decide which evaluation function to use between [[·]]Ω and [[·]]U , we need to sprinkle
terms with relevance annotations: this is the case for binders, as done by Pujet et al. [10],
but also for application nodes. This is not unsurprising, as with NbE we need to evaluate
arguments of applications, while the reduction of Pujet et al. is call-by-name. Fortunately, all
these annotations can be inferred during type-checking, so users do not need to put them in.

3 Cast-on-refl in term-directed NbE
An innovation of Pujet et al. [11] is the recovery of the definitional equality cast(A,A, e, t) ≡ t
for any type A, which did not hold in earlier version of observational equality. The idea is to
incorporate it not in reduction, but in conversion, i.e. when comparing two terms. We follow
suit: our NbE implements β-normalisation only, and we implement cast-on-refl on a by-need
basis when comparing semantic values, just like η-expansion. All in all, our algorithm is entirely
term-directed.

4 Proof assistant features
We implement contextual meta-variables in the fashion of Matita [5] and Coq: a meta-variable
has a context, and each of its use of comes with a substitution instantiating said context. This
contrasts with the more standard use of lambda-lifting [7], proponents of which claim is simpler.
Still, we found contextual meta-variables altogether not too complicated, and led to clearer code.

A very useful feature present in Agda is the ability to incrementally construct terms by
filling holes, with the editor presenting information such as the expected type of a hole and the
variables in scope. We implement a lightweight version of this mechanism: our syntax contains
a primitive ?{t1, …, tn}, which errors but reports to the user the expected type for this hole,
and that of t1 to tn, as exemplified by the following code.

let f : ℕ → ℕ =
λx. S x

in
let x : ℕ =

S (S (S 0))
in f ?{f, x}

[error]: Found proof goal.
╭──▶ <test-file>@6:6-6:13

6 │ f ?{f, x}
• ┬──────
• ╰╸ Expected type [ℕ] at goal.
• List of relevant terms and their types:

─────╯ f : ℕ → ℕ, x : ℕ
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