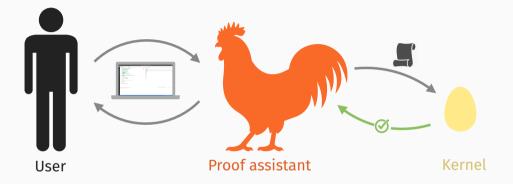
Martin-Löf à la Coq

Mechanized normalisation for a dependently typed language

Arthur ADJEDJ¹ **Meven LENNON-BERTRAND²** Kenji MAILLARD³ Pierre-Marie PÉDROT³ Loïc PUJET⁴ ¹ENS Paris-Saclay ²University of Cambridge ³Inria ⁴Stockholm University Journée RECIPROG – 03 juin 2024

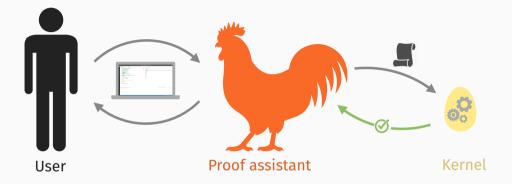
A BIT OF CONTEXT

THE GRAIL

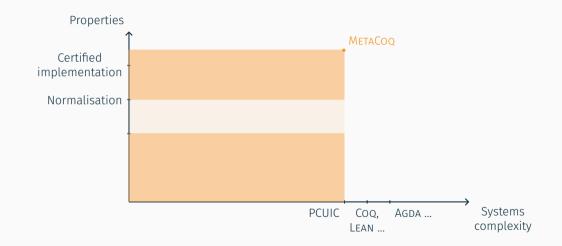


The de Bruijn architecture

THE GRAIL



The de Bruijn architecture: a perfect target for certification!



- every reduction path $t_0 \rightsquigarrow t_1 \rightsquigarrow t_2 \rightsquigarrow ...$ is finite
- there is exactly one normal form $\overline{t} \in$ Nf in each equivalence class for \cong

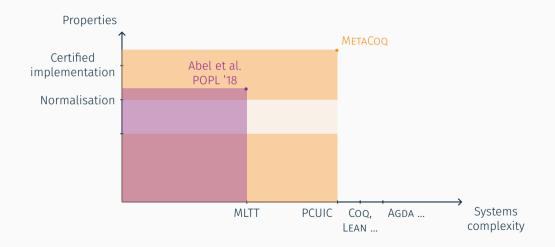
• ...

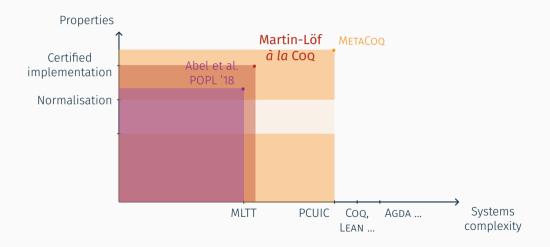
- every reduction path $t_0 \rightsquigarrow t_1 \rightsquigarrow t_2 \rightsquigarrow ...$ is finite
- there is exactly one normal form $ar{t}\in$ Nf in each equivalence class for \cong

• ...

The mother of all properties:

- decidability of conversion
- canonicity
- consistency





MARTIN-LÖF TYPE THEORY

$$\Gamma \vdash A \qquad \Gamma \vdash A \cong B \qquad \Gamma \vdash t : A \qquad \Gamma \vdash t \cong u : A$$

MARTIN-LÖF'S LOGICAL FRAMEWORK

$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash A \cong B}{\Gamma \vdash t : B}$		$\frac{\Gamma \vdash t \cong u : A \qquad \Gamma \vdash A \cong B}{\Gamma \vdash t \cong u : B}$			
$\frac{\Gamma \vdash t : A}{\Gamma \vdash t \cong t : A}$	$\frac{\Gamma \vdash t \cong u : A}{\Gamma \vdash u \cong t : A}$	$\frac{\Gamma \vdash t \cong u : A}{\Gamma \vdash t}$	$\Gamma \vdash u \cong v : A$ $\cong v : A$	- + for types	
$\frac{(x:A)\in\Gamma}{\Gamma\vdash xA}$					

MARTIN-LÖF'S LOGICAL FRAMEWORK

$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash A \cong B}{\Gamma \vdash t : B}$		$\frac{\Gamma \vdash t \cong u : A \qquad \Gamma \vdash A \cong B}{\Gamma \vdash t \cong u : B}$				
$\frac{\Gamma \vdash t : A}{\Gamma \vdash t \cong t : A}$	$\frac{\Gamma \vdash t \cong u : A}{\Gamma \vdash u \cong t : A}$	$\frac{\Gamma \vdash t \cong \boldsymbol{u} : A \qquad \Gamma \vdash}{\Gamma \vdash t \cong \boldsymbol{v} : A}$		+ for types		
$\frac{(x:A) \in \Gamma}{\Gamma \vdash xA}$						

Derivations are not unique!

FUNCTIONS

$$\frac{\Gamma \vdash A}{\Gamma, x: A \vdash B} \qquad \frac{\Gamma \vdash A \quad \Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A.B} \qquad \frac{\Gamma \vdash t: \Pi x: A.B \quad \Gamma \vdash u: A}{\Gamma \vdash t: B}$$

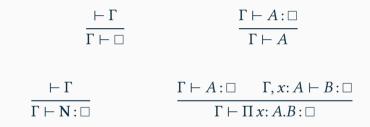
$$\frac{\Gamma \vdash t \cong t' : \Pi x : A.B}{\Gamma \vdash t u \cong t' u' : B[u]} + \text{other congruences}$$

$$\beta \frac{\Gamma \vdash A}{\Gamma \vdash (\lambda x: A \vdash B)} \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash (\lambda x: A.t) u \cong t[u]: B[u]}$$
$$\eta \frac{\Gamma \vdash f: \Pi x: A.B}{\Gamma \vdash f \cong \lambda x: A.f x: \Pi x: A.B}$$

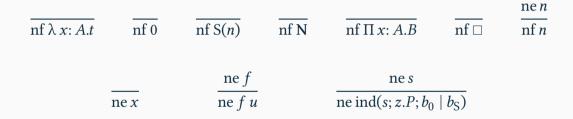
 $\frac{\Gamma \vdash s: \mathbb{N} \quad \Gamma, z: \mathbb{N} \vdash P \quad \Gamma \vdash b_0: P[0] \quad \Gamma \vdash b_S: \Pi y: \mathbb{N} . P[y] \to P[S(y)]}{\Gamma \vdash \operatorname{ind}(s; z. P; b_0 \mid b_S): P[s]}$

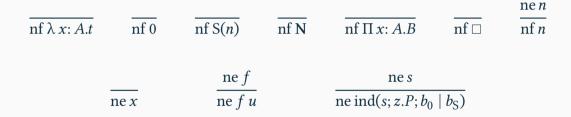
 $\frac{\Gamma, z: \mathbf{N} \vdash P \qquad \Gamma \vdash b_0 : P[0] \qquad \Gamma \vdash b_{\mathbf{S}} : \Pi \ y: \mathbf{N} . P[y] \to P[\mathbf{S}(y)]}{\Gamma \vdash \operatorname{ind}(0; z.P; b_0 \mid b_{\mathbf{S}}) \cong b_0 : P[0]}$

I spare you the successor



With this + ind, you can start doing nasty things





Idea: things that have "finished computing"

$$\frac{\Gamma \vdash A \qquad \Gamma, x: A \vdash B \qquad \Gamma, x: A \vdash t: B \qquad \Gamma \vdash u: A}{\Gamma \vdash (\lambda x: A.t) u \rightsquigarrow^{\star} t[u]: B[u]} + \text{ other } \beta \text{ rules } (\text{no } \eta)$$

 $\frac{\Gamma \vdash t \rightsquigarrow^{\star} t' : \Pi x : A.B}{\Gamma \vdash t u \rightsquigarrow^{\star} t' u : B[u]}$

+ other **head** congruences

$$\frac{\Gamma \vdash A \rightsquigarrow^{\star} A' : \Box}{\Gamma \vdash A \rightsquigarrow^{\star} A'}$$

THE LOGICAL RELATION

Usually, for logical relations, one

- 1. defines a suitable predicate by induction on types
- 2. shows that each typing rule is sound for this predicate
- 3. enjoys

Usually, for logical relations, one

- 1. defines a suitable predicate by induction on types
- 2. shows that each typing rule is sound for this predicate
- 3. enjoys

Dependent types are more complicated:

- up to conversion
- might not be a nice constructor (not all types are N, Π or $\Box !)$

Natural numbers:

 $\frac{\mathcal{T} :: \Gamma \vdash T \rightsquigarrow^{\star} \mathbf{N}}{\mathrm{red}_{\mathbf{N}}(\mathcal{T}) :: \Gamma \Vdash T}$

Given \mathcal{A} :: $\Gamma \Vdash A$, 3 predicates:

 $\Gamma \Vdash_{\mathcal{A}} A \cong B \qquad \qquad \Gamma \Vdash_{\mathcal{A}} t : A \qquad \qquad \Gamma \Vdash_{\mathcal{A}} t \cong u : A$

Natural numbers:

 $\frac{\mathcal{T} :: \Gamma \vdash T \rightsquigarrow^* \mathbf{N}}{\operatorname{red}_{\mathbf{N}}(\mathcal{T}) :: \Gamma \Vdash T}$

Given $\mathcal{A} :: \Gamma \Vdash A$, 3 predicates:

 $\Gamma \Vdash_{\mathcal{A}} A \cong B \qquad \qquad \Gamma \Vdash_{\mathcal{A}} t : A \qquad \qquad \Gamma \Vdash_{\mathcal{A}} t \cong u : A$

Natural numbers:

$$\frac{\Gamma \vdash t \rightsquigarrow^{\star} 0: \mathbf{N}}{\Gamma \Vdash_{\mathrm{red}_{\mathbf{N}}(\mathcal{T})} t: T} \qquad \qquad \frac{\Gamma \vdash t \rightsquigarrow^{\star} S(t'): \mathbf{N}}{\Gamma \Vdash t': \mathbf{N}}$$

Given $\mathcal{A} :: \Gamma \Vdash A$, 3 predicates:

 $\frac{\Gamma \vdash t \rightsquigarrow^{\star} 0: \mathbf{N}}{\Gamma \Vdash_{\mathrm{red}_{\mathbf{N}}(\mathcal{T})} t: T}$

 $\Gamma \Vdash_{\mathcal{A}} A \cong B \qquad \qquad \Gamma \Vdash_{\mathcal{A}} t : A \qquad \qquad \Gamma \Vdash_{\mathcal{A}} t \cong u : A$

Natural numbers:

Given $\mathcal{A} :: \Gamma \Vdash A$, 3 predicates:

$$\Gamma \Vdash_{\mathcal{A}} A \cong B \qquad \qquad \Gamma \Vdash_{\mathcal{A}} t : A \qquad \qquad \Gamma \Vdash_{\mathcal{A}} t \cong u : A$$

 $\frac{\Gamma \vdash B \rightsquigarrow^{\star} \mathbf{N}}{\Gamma \Vdash_{\mathrm{red}_{\mathbf{N}}(\mathcal{T})} A \cong B}$

 $\Gamma \Vdash_{\operatorname{red}_{\mathbb{N}}(\mathcal{T})} t \cong u : A$ is essentially similar to $\Gamma \Vdash_{\operatorname{red}_{\mathbb{N}}(\mathcal{T})} t : T$

A Kripke logical relation:

 $\frac{A :: \forall \rho :: \Delta \leq \Gamma.\Delta \Vdash A[\rho]}{\operatorname{red}_{\Pi}(\mathcal{A}, \mathcal{B}) :: \Gamma \Vdash T} \xrightarrow{} A.B} = \frac{A :: \forall \rho :: \Delta \leq \Gamma.\Delta \Vdash A[\rho]}{\operatorname{red}_{\Pi}(\mathcal{A}, \mathcal{B}) :: \Gamma \Vdash T}$

 $\frac{\forall (\rho :: \Delta \leq \Gamma) \ a \ (h :: \Delta \Vdash_{\mathcal{A}\rho} a : A[\rho]). \quad \Delta \Vdash_{\mathcal{B}\rho h} t[\rho] \ a : B[\rho, a]}{\Gamma \Vdash_{\mathrm{red}_{\Pi}(\mathcal{A}, \mathcal{B})} f : T}$

A Kripke logical relation:

 $\Gamma \vdash T \rightsquigarrow^* \Pi x : A B$ $\mathcal{B} :: \forall (\rho :: \Delta \leq \Gamma) a. \quad \Delta \Vdash_{\mathcal{A} \rho} a : A[\rho] \Rightarrow \Delta \Vdash B[\rho, a]$ $\mathcal{A} :: \forall \rho :: \Delta \leq \Gamma . \Delta \Vdash A[\rho]$ $\operatorname{red}_{\Pi}(\mathcal{A},\mathcal{B}) :: \Gamma \Vdash T$

$$\frac{\forall (\rho :: \Delta \leq \Gamma) \ a \ (h :: \Delta \Vdash_{\mathcal{A}\rho} a : A[\rho]). \quad \Delta \Vdash_{\mathcal{B}\rho h} t[\rho] \ a : B[\rho, a]}{\Gamma \Vdash_{\mathrm{red}_{\Pi}(\mathcal{A},\mathcal{B})} f : T}$$

Reducibility at the universe is reducibility of types:

 $\Gamma \Vdash A$

 $\frac{1}{\Gamma \Vdash_{\operatorname{red}_{\Box}(\mathcal{T})} A:T}$

FLIRTING WITH LOGICAL LIMITS

- Mutual definition of $\Gamma \Vdash A$ and $\Gamma \Vdash t : A$ via the Π -type
- reducibility at the universe $\Gamma \Vdash A : \Box$ calls itself?
- ...

FLIRTING WITH LOGICAL LIMITS

- Mutual definition of $\Gamma \Vdash A$ and $\Gamma \Vdash t : A$ via the Π -type
- reducibility at the universe $\Gamma \Vdash A : \Box$ calls itself?
- ...

Induction-recursion + stratified definitions

FLIRTING WITH LOGICAL LIMITS

- Mutual definition of $\Gamma \Vdash A$ and $\Gamma \Vdash t : A$ via the $\Pi\text{-type}$
- reducibility at the universe $\Gamma \Vdash A : \Box$ calls itself?
- ...

Induction-recursion + stratified definitions

 $\cdot \Vdash^0 \Box$ but $\cdot \Vdash^1 \Box$, and

$$\cdot \Vdash^{0} A \\ \hline \cdot \Vdash^{1}_{\mathrm{red}_{\Box}(\dots)} A : \Box$$

Induction-Recursion

```
Inductive domain (U),
recursive function (El)
data U : Set
El : U \rightarrow Set
data U where
b : U
\pi : (A : U)
```

```
(B : EL A → U)
→ U
EL b = bool
EL (π A B) =
(a : EL A) → EL (B a)
```

Induction-Recursion

```
Inductive domain (U).
recursive function (El)
   data U : Set
   F1 : U \rightarrow Set
   data U where
     b : U
     \pi : (A : U)
          (B : EI A \rightarrow U)
          → U
   El b = bool
   El (\pi A B) =
     (a : El A) \rightarrow El (B a)
```

Small Induction-Recursion

Inductively defined image of the function (ImEl)

```
data ImEl : Set → Set, where
    isb : ImEl bool
    isπ : {A : Set}
        {B : A → Set}
        (iA : ImEl A)
        (iB : (a : A) → ImEl (B a))
        → ImEl ((a : A) → B a)
record U : Set, where
```

```
field
  el : Set
  imEl : ImEl el
```

```
El : U \rightarrow Set

El \times = \times .el

b : U

b .el = bool

b .imEl = isb

\pi : (A : U) (B : El A \rightarrow U) \rightarrow U

(\pi \land B) .el =

(a : A .el) \rightarrow (B a) .el

(\pi \land B) .imEl =

is\pi (A .imEl)

(\lambda a \rightarrow (B a) .imEl)
```

Induction-Recursion

```
Inductive domain (U).
recursive function (El)
   data U : Set
   F1 : U \rightarrow Set
   data U where
     b : U
     \pi : (A : U)
          (B : EI A \rightarrow U)
          → U
   El b = bool
   El (\pi A B) =
     (a : El A) \rightarrow El (B a)
```

Small Induction-Recursion

Inductively defined image of the function (ImEl)

```
El x = x .el

b : U

b .el = bool

b .imEl = isb

\pi : (A : U) (B : El A \rightarrow U) \rightarrow U
(\pi A B) .el =
(a : A .el) \rightarrow (B a) .el
(\pi A B) .imEl =
is\pi (A .imEl)
(\lambda a \rightarrow (B a) .imEl)
```

- Need to re-encapsulate
- Typically raises universe levels

(Small) INDUCTION-RECURSION

	<pre>Inductive LR@{i j k} {l : TypeLevel} (rec : forall l', l' << l -> RedRel@{i j})</pre>	
	: RedRel@{j k} :=	
	LRU {F A} (H : [F -U <l> A]) :</l>	
	LR rec F A	
Inducti	(fun B => [Γ -U≅ B])	
	(fun t => [rec Γ -U t : A H])	
Inductive of	(fun t u => [rec Γ -U t ≅ u : A H])	
	$ Ppo \{ [\Lambda] (po\Lambda) [[po \Lambda]] \}$	
recursive f	LR rec T A	
data U :	$(fun B \Rightarrow [\Gamma -ne A \cong B neA])$	
El : U →	(fun t => [Γ -ne t : A neA])	
	(fun t u => [Γ -ne t ≅ u : A neA])	
data U wł	LRPi {Γ : context} {A : term} (ΠA : PiRedTy@{j} Γ A) (ΠAad : PiRedTyAdequat	
b : U	LR rec Г A	
π:(Α	(fun B => [Γ -Π A ≅ B ΠA])	$A \rightarrow U \rightarrow U$
(В	$(fun t \Rightarrow [\Gamma - \Pi t : A \Pi A])$	
→ L	(fun t u => [Γ -Π t ≅ u : A ΠA])	a) .el
	LRNat {Γ A} (NA : [Γ -Nat A]) :	
Elb = bc	LK TEC T A (Natheuryly NA) (Natheurin NA) (Natheurinly NA)	
El (π Α Ε		.imEl)
(a : E1	LR rec Γ A (EmptyRedTyEq NA) (EmptyRedTm NA) (EmptyRedTmEq NA)	
	LRSig {Γ : context} {A : term} (ΣA : SigRedTy@{j} Γ A) (ΣAad : SigRedTyAded	1
	LR rec Γ A (SigRedTyEq Σ A) (SigRedTm Σ A) (SigRedTmEq Σ A)	
	LRList {Γ : context} {A : term}	
	(LA : ListRedTyPack@{j} Γ A) (LAAd : ListRedTyAdequate@{j k} (LR rec) LA	
	IR rec E A	

16

PROPERTIES OF THE LOGICAL RELATION

- Escape: $\Gamma \Vdash A \Rightarrow \Gamma \vdash A$
- Irrelevance
- Equivalence: reflexivity, symmetry, transitivity
- Weakening
- Neutral reflection
- Closure by anti-reduction

PROPERTIES OF THE LOGICAL RELATION

- Escape: $\Gamma \Vdash A \Rightarrow \Gamma \vdash A$
- Irrelevance
- Equivalence: reflexivity, symmetry, transitivity
- Weakening
- Neutral reflection
- Closure by anti-reduction

Fundamental lemma: if $\Gamma \vdash t : A$ then $\mathcal{A} :: \Gamma \Vdash A$ and $\Gamma \Vdash_{\mathcal{A}} t : A$

 \Rightarrow all types/terms have a whnf

ALGORITHMIC CONVERSION

Arbitrarily mixing:

- Transitivity, symmetry, reflexivity,
- Congruences (arbitrary),
- Computation steps (β),
- Extensionality steps (η).

Arbitrarily mixing:

- Transitivity, symmetry, reflexivity,
- Congruences (arbitrary),
- Computation steps (β),
- Extensionality steps (η).

Algorithmic conversion

Term/type-directed alternation of:

- Reduction to weak-head normal form,
- Type-directed extensionality rules,
- Selected congruences.
- \Rightarrow Implementable

Arbitrarily mixing:

- Transitivity, symmetry, reflexivity,
- Congruences (arbitrary),
- Computation steps (β),
- Extensionality steps (η).

Algorithmic conversion

Term/type-directed alternation of:

- Reduction to weak-head normal form,
- Type-directed extensionality rules,
- Selected congruences.
- \Rightarrow Implementable

How can we compare the two presentations?

Arbitrarily mixing:

- Transitivity, symmetry, reflexivity,
- Congruences (arbitrary),
- Computation steps (β),
- Extensionality steps (η).

Algorithmic conversion

Term/type-directed alternation of:

- Reduction to weak-head normal form,
- Type-directed extensionality rules,
- Selected congruences.
- \Rightarrow Implementable

How can we compare the two presentations?

Algorithmic → **Declarative:** Admissibility of algorithmic rules

Arbitrarily mixing:

- Transitivity, symmetry, reflexivity,
- Congruences (arbitrary),
- Computation steps (β),
- Extensionality steps (η).

Algorithmic conversion

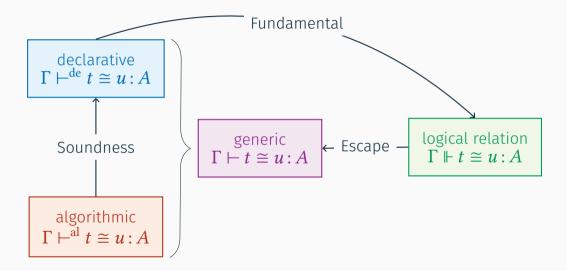
Term/type-directed alternation of:

- Reduction to weak-head normal form,
- Type-directed extensionality rules,
- Selected congruences.
- \Rightarrow Implementable

How can we compare the two presentations?

Algorithmic \rightarrow Declarative: Admissibility of algorithmic rules Declarative \rightarrow Algorithmic: Show that every derivation has a canonical form

2 LOGICAL RELATIONS IN 1



BACK TO THE BIG PICTURE

- Port to Coq
- More types (equality, lists...)

- Port to Coq
- More types (equality, lists...)

- Small induction-recursion
- New insights from bidirectional typing
- A certified, executable, type-checker
- Proof engineering lessons?

Do we have to suffer this much?

- + no fancy maths
- + works in a rather barebone meta-theory
- + strong result: we get a certified evaluator

Do we have to suffer this much?

- + no fancy maths
- + works in a rather barebone meta-theory
- + strong result: we get a certified evaluator
- partial equivalence relations, by hand
- Kripke quantification, by hand
- no big picture

(ask Kenji about his suffering with W types)

Do we have to suffer this much?

- + no fancy maths
- + works in a rather barebone meta-theory
- + strong result: we get a certified evaluator
- partial equivalence relations, by hand
- Kripke quantification, by hand
- no big picture

(ask Kenji about his suffering with W types)

A whole different approach "exists":

- syntax as a generalised algebraic theory (PER \rightarrow equality)
- fancy categorical gluing in presheave toposes (Kripke quantification for free)
- normalisation by evaluation as a model (no reduction)

Is this the future?

Normalisation and the guard

- it should be possible to adapt to fixpoint + case + guard
- We probably want a less syntactic criterion? Sized types (Abel et al., 2017)?
- we might suffer quite a bit
- anyway, is this *really* what we want?

Normalisation and the guard

- it should be possible to adapt to fixpoint + case + guard
- We probably want a less syntactic criterion? Sized types (Abel et al., 2017)?
- we might suffer quite a bit
- anyway, is this really what we want?

Elaboration?

- how fancy a guard can we elaborate to a recursor?
- with which guarantees/properties? (is small IR a good example?)
- is normalisation easily transferable?

Thank you!