
MARTIN-LÖF À LA COQ
Mechanized normalisation for a dependently typed language

Arthur ADJEDJ1 Meven LENNON-BERTRAND2 Kenji MAILLARD3 Pierre-Marie PÉDROT3 Loïc PUJET4
1ENS Paris-Saclay 2University of Cambridge 3Inria 4Stockholm University

Journée RECIPROG – 03 juin 2024

1



A BIT OF CONTEXT



THE GRAIL

KernelProof assistantUser

The de Bruijn architecture

: a perfect target for certification!

2



THE GRAIL

KernelProof assistantUser

The de Bruijn architecture: a perfect target for certification!

2



WE ARE NOT ALONE

Systems
complexity

MLTT

PCUIC COQ,
LEAN …

AGDA …

Properties

Certified
implementation

Normalisation

METACOQ

Martin-Löf
à la COQ

Abel et al.
POPL ’18

3



NORMALISATION

• every reduction path 𝑡0 ⇝ 𝑡1 ⇝ 𝑡2 ⇝ … is finite
• there is exactly one normal form 𝑡 ∈ Nf in each equivalence class for ≅
• …

The mother of all properties:
• decidability of conversion
• canonicity
• consistency

4



NORMALISATION

• every reduction path 𝑡0 ⇝ 𝑡1 ⇝ 𝑡2 ⇝ … is finite
• there is exactly one normal form 𝑡 ∈ Nf in each equivalence class for ≅
• …

The mother of all properties:
• decidability of conversion
• canonicity
• consistency

4



WE ARE NOT ALONE

Systems
complexity

MLTT PCUIC COQ,
LEAN …

AGDA …

Properties

Certified
implementation

Normalisation

METACOQ

Martin-Löf
à la COQ

Abel et al.
POPL ’18

5



WE ARE NOT ALONE

Systems
complexity

MLTT PCUIC COQ,
LEAN …

AGDA …

Properties

Certified
implementation

Normalisation

METACOQMartin-Löf
à la COQ

Abel et al.
POPL ’18

5



MARTIN-LÖF TYPE THEORY



MARTIN-LÖF’S LOGICAL FRAMEWORK

Γ ⊢ 𝐴 Γ ⊢ 𝐴 ≅ 𝐵 Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝑡 : 𝐵

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐵

Γ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴
Γ ⊢ 𝑢 ≅ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑣 : 𝐴 + for types

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥𝐴

Derivations are not unique!

6



MARTIN-LÖF’S LOGICAL FRAMEWORK

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝑡 : 𝐵

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐵

Γ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴
Γ ⊢ 𝑢 ≅ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑣 : 𝐴 + for types

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥𝐴

Derivations are not unique!

6



MARTIN-LÖF’S LOGICAL FRAMEWORK

Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝑡 : 𝐵

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝐴 ≅ 𝐵
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐵

Γ ⊢ 𝑡 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴
Γ ⊢ 𝑢 ≅ 𝑡 : 𝐴

Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴 Γ ⊢ 𝑢 ≅ 𝑣 : 𝐴
Γ ⊢ 𝑡 ≅ 𝑣 : 𝐴 + for types

(𝑥: 𝐴) ∈ Γ
Γ ⊢ 𝑥𝐴

Derivations are not unique!

6



FUNCTIONS

Γ ⊢ 𝐴
Γ, 𝑥: 𝐴 ⊢ 𝐵
Γ ⊢ Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵
Γ ⊢ λ 𝑥: 𝐴.𝑡 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑡 : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ 𝑡 𝑢 : 𝐵[𝑢]

Γ ⊢ 𝑡 ≅ 𝑡′ : Π 𝑥: 𝐴.𝐵 Γ ⊢ 𝑢 ≅ 𝑢′ : 𝐴
Γ ⊢ 𝑡 𝑢 ≅ 𝑡′ 𝑢′ : 𝐵[𝑢] + other congruences

β
Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ (λ 𝑥: 𝐴.𝑡) 𝑢 ≅ 𝑡[𝑢] : 𝐵[𝑢]

η
Γ ⊢ 𝑓 : Π 𝑥: 𝐴.𝐵

Γ ⊢ 𝑓 ≅ 𝜆𝑥: 𝐴.𝑓 𝑥 : Π 𝑥: 𝐴.𝐵
7



LARGE ELIMINATION

⊢ Γ
Γ ⊢ 𝐍

⊢ Γ
Γ ⊢ 0 : 𝐍

Γ ⊢ 𝑛 : 𝐍
Γ ⊢ S(𝑛) : 𝐍

Γ ⊢ 𝑠 : 𝐍 Γ, 𝑧: 𝐍 ⊢ 𝑃 Γ ⊢ 𝑏0 : 𝑃[0] Γ ⊢ 𝑏S : Π 𝑦: 𝐍 .𝑃[𝑦] → 𝑃[S(𝑦)]
Γ ⊢ ind(𝑠; 𝑧.𝑃 ; 𝑏0 ∣ 𝑏S) : 𝑃[𝑠]

Γ, 𝑧: 𝐍 ⊢ 𝑃 Γ ⊢ 𝑏0 : 𝑃[0] Γ ⊢ 𝑏S : Π 𝑦: 𝐍 .𝑃[𝑦] → 𝑃[S(𝑦)]
Γ ⊢ ind(0; 𝑧.𝑃; 𝑏0 ∣ 𝑏S) ≅ 𝑏0 : 𝑃[0]

I spare you the successor

8



UNIVERSE(S)

⊢ Γ
Γ ⊢ □

Γ ⊢ 𝐴 :□
Γ ⊢ 𝐴

⊢ Γ
Γ ⊢ 𝐍 :□

Γ ⊢ 𝐴 :□ Γ, 𝑥: 𝐴 ⊢ 𝐵 :□
Γ ⊢ Π 𝑥: 𝐴.𝐵 :□

With this + ind, you can start doing nasty things

9



NORMAL AND NEUTRAL FORMS

nf λ 𝑥: 𝐴.𝑡 nf 0 nf S(𝑛) nf 𝐍 nf Π 𝑥: 𝐴.𝐵 nf □
ne 𝑛
nf 𝑛

ne 𝑥
ne 𝑓
ne 𝑓 𝑢

ne 𝑠
ne ind(𝑠; 𝑧.𝑃 ; 𝑏0 ∣ 𝑏S)

Idea: things that have “finished computing”

10



NORMAL AND NEUTRAL FORMS

nf λ 𝑥: 𝐴.𝑡 nf 0 nf S(𝑛) nf 𝐍 nf Π 𝑥: 𝐴.𝐵 nf □
ne 𝑛
nf 𝑛

ne 𝑥
ne 𝑓
ne 𝑓 𝑢

ne 𝑠
ne ind(𝑠; 𝑧.𝑃 ; 𝑏0 ∣ 𝑏S)

Idea: things that have “finished computing”

10



REDUCTION

Γ ⊢ 𝐴 Γ, 𝑥: 𝐴 ⊢ 𝐵 Γ, 𝑥: 𝐴 ⊢ 𝑡 : 𝐵 Γ ⊢ 𝑢 : 𝐴
Γ ⊢ (λ 𝑥: 𝐴.𝑡) 𝑢 ⇝⋆ 𝑡[𝑢] : 𝐵[𝑢] + other β rules (no η)

Γ ⊢ 𝑡 ⇝⋆ 𝑡′ : Π 𝑥: 𝐴.𝐵
Γ ⊢ 𝑡 𝑢 ⇝⋆ 𝑡′ 𝑢 : 𝐵[𝑢] + other head congruences

Γ ⊢ 𝐴 ⇝⋆ 𝐴′ :□
Γ ⊢ 𝐴 ⇝⋆ 𝐴′

11



THE LOGICAL RELATION



A STANDARD RECIPE, WITH A TWIST

Usually, for logical relations, one
1. defines a suitable predicate by induction on types
2. shows that each typing rule is sound for this predicate
3. enjoys

Dependent types are more complicated:
• up to conversion
• might not be a nice constructor (not all types are 𝐍, Π or □!)

12



A STANDARD RECIPE, WITH A TWIST

Usually, for logical relations, one
1. defines a suitable predicate by induction on types
2. shows that each typing rule is sound for this predicate
3. enjoys

Dependent types are more complicated:
• up to conversion
• might not be a nice constructor (not all types are 𝐍, Π or □!)

12



THE LOGICAL RELATION: REDUCIBILITY

A predicate Γ ⊩ 𝐴 characterizing types by their weak head normal form.

Given A :: Γ ⊩ 𝐴, 3 predicates:
Γ ⊩A 𝐴 ≅ 𝐵 Γ ⊩A 𝑡 : 𝐴 Γ ⊩A 𝑡 ≅ 𝑢 : 𝐴

Natural numbers:

T :: Γ ⊢ 𝑇 ⇝⋆ 𝐍
red𝐍(T ) :: Γ ⊩ 𝑇

13



THE LOGICAL RELATION: REDUCIBILITY

A predicate Γ ⊩ 𝐴 characterizing types by their weak head normal form.

Given A :: Γ ⊩ 𝐴, 3 predicates:
Γ ⊩A 𝐴 ≅ 𝐵 Γ ⊩A 𝑡 : 𝐴 Γ ⊩A 𝑡 ≅ 𝑢 : 𝐴

Natural numbers:

T :: Γ ⊢ 𝑇 ⇝⋆ 𝐍
red𝐍(T ) :: Γ ⊩ 𝑇

13



THE LOGICAL RELATION: REDUCIBILITY

A predicate Γ ⊩ 𝐴 characterizing types by their weak head normal form.

Given A :: Γ ⊩ 𝐴, 3 predicates:
Γ ⊩A 𝐴 ≅ 𝐵 Γ ⊩A 𝑡 : 𝐴 Γ ⊩A 𝑡 ≅ 𝑢 : 𝐴

Natural numbers:

T :: Γ ⊢ 𝑇 ⇝⋆ 𝐍
red𝐍(T ) :: Γ ⊩ 𝑇

13



THE LOGICAL RELATION: REDUCIBILITY

A predicate Γ ⊩ 𝐴 characterizing types by their weak head normal form.

Given A :: Γ ⊩ 𝐴, 3 predicates:
Γ ⊩A 𝐴 ≅ 𝐵 Γ ⊩A 𝑡 : 𝐴 Γ ⊩A 𝑡 ≅ 𝑢 : 𝐴

Natural numbers:

Γ ⊢ 𝑡 ⇝⋆ 0 : 𝐍
Γ ⊩red𝐍(T ) 𝑡 : 𝑇

Γ ⊢ 𝑡 ⇝⋆ S(𝑡′) : 𝐍
Γ ⊩ 𝑡′ : 𝐍

Γ ⊩red𝐍(T ) 𝑡 : 𝑇

Γ ⊢ 𝑡 ⇝⋆ 𝑛 : 𝐍
Γ ⊢ 𝑛 ≈ 𝑛 : 𝐍
Γ ⊩red𝐍(T ) 𝑡 : 𝑇

neutral-specific conversion

13



THE LOGICAL RELATION: REDUCIBILITY

A predicate Γ ⊩ 𝐴 characterizing types by their weak head normal form.

Given A :: Γ ⊩ 𝐴, 3 predicates:
Γ ⊩A 𝐴 ≅ 𝐵 Γ ⊩A 𝑡 : 𝐴 Γ ⊩A 𝑡 ≅ 𝑢 : 𝐴

Natural numbers:

Γ ⊢ 𝑡 ⇝⋆ 0 : 𝐍
Γ ⊩red𝐍(T ) 𝑡 : 𝑇

Γ ⊢ 𝑡 ⇝⋆ S(𝑡′) : 𝐍
Γ ⊩ 𝑡′ : 𝐍

Γ ⊩red𝐍(T ) 𝑡 : 𝑇

Γ ⊢ 𝑡 ⇝⋆ 𝑛 : 𝐍
Γ ⊢ 𝑛 ≈ 𝑛 : 𝐍
Γ ⊩red𝐍(T ) 𝑡 : 𝑇

neutral-specific conversion

13



THE LOGICAL RELATION: REDUCIBILITY

A predicate Γ ⊩ 𝐴 characterizing types by their weak head normal form.

Given A :: Γ ⊩ 𝐴, 3 predicates:
Γ ⊩A 𝐴 ≅ 𝐵 Γ ⊩A 𝑡 : 𝐴 Γ ⊩A 𝑡 ≅ 𝑢 : 𝐴

Γ ⊢ 𝐵 ⇝⋆ 𝐍
Γ ⊩red𝐍(T ) 𝐴 ≅ 𝐵

Γ ⊩red𝐍(T ) 𝑡 ≅ 𝑢 : 𝐴 is essentially similar to Γ ⊩red𝐍(T ) 𝑡 : 𝑇

13



THE SCARY BITS

A Kripke logical relation:

Γ ⊢ 𝑇 ⇝⋆ Π𝑥: 𝐴.𝐵
A :: ∀𝜌 :: Δ ≤ Γ.Δ ⊩ 𝐴[𝜌] B :: ∀(𝜌 :: Δ ≤ Γ) 𝑎. Δ ⊩A 𝜌 𝑎 : 𝐴[𝜌] ⇒ Δ ⊩ 𝐵[𝜌, 𝑎]

redΠ(A, B) :: Γ ⊩ 𝑇

∀(𝜌 :: Δ ≤ Γ) 𝑎 (ℎ :: Δ ⊩A 𝜌 𝑎 : 𝐴[𝜌]). Δ ⊩B 𝜌 ℎ 𝑡[𝜌] 𝑎 : 𝐵[𝜌, 𝑎]
Γ ⊩redΠ(A,B) 𝑓 : 𝑇

Reducibility at the universe is reducibility of types:

Γ ⊩ 𝐴
Γ ⊩red□(T ) 𝐴 : 𝑇

14



THE SCARY BITS

A Kripke logical relation:

Γ ⊢ 𝑇 ⇝⋆ Π𝑥: 𝐴.𝐵
A :: ∀𝜌 :: Δ ≤ Γ.Δ ⊩ 𝐴[𝜌] B :: ∀(𝜌 :: Δ ≤ Γ) 𝑎. Δ ⊩A 𝜌 𝑎 : 𝐴[𝜌] ⇒ Δ ⊩ 𝐵[𝜌, 𝑎]

redΠ(A, B) :: Γ ⊩ 𝑇

∀(𝜌 :: Δ ≤ Γ) 𝑎 (ℎ :: Δ ⊩A 𝜌 𝑎 : 𝐴[𝜌]). Δ ⊩B 𝜌 ℎ 𝑡[𝜌] 𝑎 : 𝐵[𝜌, 𝑎]
Γ ⊩redΠ(A,B) 𝑓 : 𝑇

Reducibility at the universe is reducibility of types:

Γ ⊩ 𝐴
Γ ⊩red□(T ) 𝐴 : 𝑇

14



FLIRTING WITH LOGICAL LIMITS

• Mutual definition of Γ ⊩ 𝐴 and Γ ⊩ 𝑡 : 𝐴 via the Π-type
• reducibility at the universe Γ ⊩ 𝐴 :□ calls itself?
• …

Induction-recursion + stratified definitions

⋅ ⊮0 □ but ⋅ ⊩1 □, and
⋅ ⊩0 𝐴

⋅ ⊩1red□(… ) 𝐴 :□

15



FLIRTING WITH LOGICAL LIMITS

• Mutual definition of Γ ⊩ 𝐴 and Γ ⊩ 𝑡 : 𝐴 via the Π-type
• reducibility at the universe Γ ⊩ 𝐴 :□ calls itself?
• …

Induction-recursion + stratified definitions

⋅ ⊮0 □ but ⋅ ⊩1 □, and
⋅ ⊩0 𝐴

⋅ ⊩1red□(… ) 𝐴 :□

15



FLIRTING WITH LOGICAL LIMITS

• Mutual definition of Γ ⊩ 𝐴 and Γ ⊩ 𝑡 : 𝐴 via the Π-type
• reducibility at the universe Γ ⊩ 𝐴 :□ calls itself?
• …

Induction-recursion + stratified definitions

⋅ ⊮0 □ but ⋅ ⊩1 □, and
⋅ ⊩0 𝐴

⋅ ⊩1red□(… ) 𝐴 :□

15



(SMALL) INDUCTION-RECURSION

Induction-Recursion

Inductive domain (U),
recursive function (El)

Small Induction-Recursion

Inductively defined image of the function (ImEl)

• Need to re-encapsulate
• Typically raises universe levels

16



(SMALL) INDUCTION-RECURSION

Induction-Recursion

Inductive domain (U),
recursive function (El)

Small Induction-Recursion

Inductively defined image of the function (ImEl)

• Need to re-encapsulate
• Typically raises universe levels

16



(SMALL) INDUCTION-RECURSION

Induction-Recursion

Inductive domain (U),
recursive function (El)

Small Induction-Recursion

Inductively defined image of the function (ImEl)

• Need to re-encapsulate
• Typically raises universe levels

16



(SMALL) INDUCTION-RECURSION

Induction-Recursion

Inductive domain (U),
recursive function (El)

Small Induction-Recursion

Inductively defined image of the function (ImEl)

• Need to re-encapsulate
• Typically raises universe levels

16



PROPERTIES OF THE LOGICAL RELATION

• Escape: Γ ⊩ 𝐴 ⇒ Γ ⊢ 𝐴
• Irrelevance
• Equivalence: reflexivity, symmetry, transitivity
• Weakening
• Neutral reflection
• Closure by anti-reduction

Fundamental lemma: if Γ ⊢ 𝑡 : 𝐴 then A :: Γ ⊩ 𝐴 and Γ ⊩A 𝑡 : 𝐴

⇒ all types/terms have a whnf

17



PROPERTIES OF THE LOGICAL RELATION

• Escape: Γ ⊩ 𝐴 ⇒ Γ ⊢ 𝐴
• Irrelevance
• Equivalence: reflexivity, symmetry, transitivity
• Weakening
• Neutral reflection
• Closure by anti-reduction

Fundamental lemma: if Γ ⊢ 𝑡 : 𝐴 then A :: Γ ⊩ 𝐴 and Γ ⊩A 𝑡 : 𝐴

⇒ all types/terms have a whnf

17



ALGORITHMIC CONVERSION



DECLARATIVE VS ALGORITHMIC CONVERSION

Declarative conversion
Arbitrarily mixing:
• Transitivity, symmetry, reflexivity,
• Congruences (arbitrary),
• Computation steps (β),
• Extensionality steps (η).

Algorithmic conversion
Term/type-directed alternation of:
• Reduction to weak-head normal form,
• Type-directed extensionality rules,
• Selected congruences.

⇒ Implementable

How can we compare the two presentations?

Algorithmic→ Declarative: Admissibility of algorithmic rules
Declarative→ Algorithmic: Show that every derivation has a canonical form

18



DECLARATIVE VS ALGORITHMIC CONVERSION

Declarative conversion
Arbitrarily mixing:
• Transitivity, symmetry, reflexivity,
• Congruences (arbitrary),
• Computation steps (β),
• Extensionality steps (η).

Algorithmic conversion
Term/type-directed alternation of:
• Reduction to weak-head normal form,
• Type-directed extensionality rules,
• Selected congruences.

⇒ Implementable

How can we compare the two presentations?

Algorithmic→ Declarative: Admissibility of algorithmic rules
Declarative→ Algorithmic: Show that every derivation has a canonical form

18



DECLARATIVE VS ALGORITHMIC CONVERSION

Declarative conversion
Arbitrarily mixing:
• Transitivity, symmetry, reflexivity,
• Congruences (arbitrary),
• Computation steps (β),
• Extensionality steps (η).

Algorithmic conversion
Term/type-directed alternation of:
• Reduction to weak-head normal form,
• Type-directed extensionality rules,
• Selected congruences.

⇒ Implementable

How can we compare the two presentations?

Algorithmic→ Declarative: Admissibility of algorithmic rules
Declarative→ Algorithmic: Show that every derivation has a canonical form

18



DECLARATIVE VS ALGORITHMIC CONVERSION

Declarative conversion
Arbitrarily mixing:
• Transitivity, symmetry, reflexivity,
• Congruences (arbitrary),
• Computation steps (β),
• Extensionality steps (η).

Algorithmic conversion
Term/type-directed alternation of:
• Reduction to weak-head normal form,
• Type-directed extensionality rules,
• Selected congruences.

⇒ Implementable

How can we compare the two presentations?

Algorithmic→ Declarative: Admissibility of algorithmic rules

Declarative→ Algorithmic: Show that every derivation has a canonical form

18



DECLARATIVE VS ALGORITHMIC CONVERSION

Declarative conversion
Arbitrarily mixing:
• Transitivity, symmetry, reflexivity,
• Congruences (arbitrary),
• Computation steps (β),
• Extensionality steps (η).

Algorithmic conversion
Term/type-directed alternation of:
• Reduction to weak-head normal form,
• Type-directed extensionality rules,
• Selected congruences.

⇒ Implementable

How can we compare the two presentations?

Algorithmic→ Declarative: Admissibility of algorithmic rules
Declarative→ Algorithmic: Show that every derivation has a canonical form

18



2 LOGICAL RELATIONS IN 1

declarative
Γ ⊢de 𝑡 ≅ 𝑢 : 𝐴

logical relation
Γ ⊩ 𝑡 ≅ 𝑢 : 𝐴

algorithmic
Γ ⊢al 𝑡 ≅ 𝑢 : 𝐴

generic
Γ ⊢ 𝑡 ≅ 𝑢 : 𝐴Soundness

Fundamental

Escape

19



BACK TO THE BIG PICTURE



MARTIN-LÖF À LA COQ

• Port to COQ
• More types (equality, lists…)

• Small induction-recursion
• New insights from bidirectional typing
• A certified, executable, type-checker
• Proof engineering lessons?

20



MARTIN-LÖF À LA COQ

• Port to COQ
• More types (equality, lists…)

• Small induction-recursion
• New insights from bidirectional typing
• A certified, executable, type-checker
• Proof engineering lessons?

20



DO WE HAVE TO SUFFER THIS MUCH?

+ no fancy maths
+ works in a rather barebone meta-theory
+ strong result: we get a certified evaluator

- partial equivalence relations, by hand
- Kripke quantification, by hand
- no big picture

(ask Kenji about his suffering
with W types)

A whole different approach “exists”:
• syntax as a generalised algebraic theory (PER → equality)
• fancy categorical gluing in presheave toposes (Kripke quantification for free)
• normalisation by evaluation as a model (no reduction)

Is this the future?

21



DO WE HAVE TO SUFFER THIS MUCH?

+ no fancy maths
+ works in a rather barebone meta-theory
+ strong result: we get a certified evaluator
- partial equivalence relations, by hand
- Kripke quantification, by hand
- no big picture

(ask Kenji about his suffering
with W types)

A whole different approach “exists”:
• syntax as a generalised algebraic theory (PER → equality)
• fancy categorical gluing in presheave toposes (Kripke quantification for free)
• normalisation by evaluation as a model (no reduction)

Is this the future?

21



DO WE HAVE TO SUFFER THIS MUCH?

+ no fancy maths
+ works in a rather barebone meta-theory
+ strong result: we get a certified evaluator
- partial equivalence relations, by hand
- Kripke quantification, by hand
- no big picture

(ask Kenji about his suffering
with W types)

A whole different approach “exists”:
• syntax as a generalised algebraic theory (PER → equality)
• fancy categorical gluing in presheave toposes (Kripke quantification for free)
• normalisation by evaluation as a model (no reduction)

Is this the future?

21



AND THE GUARD CONDITION?

Normalisation and the guard

• it should be possible to adapt to fixpoint + case + guard
• We probably want a less syntactic criterion? Sized types (Abel et al., 2017)?
• we might suffer quite a bit
• anyway, is this really what we want?

Elaboration?

• how fancy a guard can we elaborate to a recursor?
• with which guarantees/properties? (is small IR a good example?)
• is normalisation easily transferable?

22



AND THE GUARD CONDITION?

Normalisation and the guard

• it should be possible to adapt to fixpoint + case + guard
• We probably want a less syntactic criterion? Sized types (Abel et al., 2017)?
• we might suffer quite a bit
• anyway, is this really what we want?

Elaboration?

• how fancy a guard can we elaborate to a recursor?
• with which guarantees/properties? (is small IR a good example?)
• is normalisation easily transferable?

22



Thank you!

22


	A bit of context
	Martin-Löf Type Theory
	The logical relation
	Algorithmic conversion
	Back to the big picture

